The Postmodernity of Big Data By MICHAEL PEPI – In addressing the insecurities of postmodern thought, Big Data falls prey to some of the same issues of interpretation
“Big Data fascinates because its presence has always been with us in nature. Each tree, drop of rain, and the path of each grain of sand, both responds to and creates millions of data points, even on a short journey. Nature is the original algorithm, the most efficient and powerful. Mathematicians since the ancients have looked to it for inspiration; techno-capitalists now look to unlock its mysteries for private gain. Playing God has become all the more brisk and profitable thanks to cloud computing. But beyond economic motivations for Big Data’s rise, are there also epistemological ones? Has Big Data come to try to fill the vacuum of certainty left by postmodernism? Does data science address the insecurities of the postmodern thought? It turns out that trying to explain Big Data is like trying to explain postmodernism. Neither can be summarized effectively in a phrase, despite their champions’ efforts. Broad epistemological developments are compressed into cursory, ex post facto descriptions. Attempts to define Big Data, such as IBM’s marketing copy, which promises “insights gleaned” from “enterprise data warehouses that implement massively parallel processing,” “real-time scalability” and “parsing structured and unstructured sources,” focus on its implementation at the expense of its substance, decontextualizing it entirely. Similarly, definitions of postmodernism, like art critic Thomas McEvilley’s claim that it is “a renunciation that involves recognition of the relativity of the self—of one’s habit systems, their tininess, silliness, and arbitrariness” are accurate but abstract to the point of vagueness.”