MIT Technology Review – “The largest ever study of facial-recognition data shows how much the rise of deep learning has fueled a loss of privacy. In 1964, mathematician and computer scientist Woodrow Bledsoe first attempted the task of matching suspects’ faces to mugshots. He measured out the distances between different facial features in printed photographs and fed them into a computer program. His rudimentary successes would set off decades of research into teaching machines to recognize human faces. Now a new study shows just how much this enterprise has eroded our privacy. It hasn’t just fueled an increasingly powerful tool of surveillance. The latest generation of deep-learning-based facial recognition has completely disrupted our norms of consent. Deborah Raji, a fellow at nonprofit Mozilla, and Genevieve Fried, who advises members of the US Congress on algorithmic accountability, examined over 130 facial-recognition data sets compiled over 43 years. They found that researchers, driven by the exploding data requirements of deep learning, gradually abandoned asking for people’s consent. This has led more and more of people’s personal photos to be incorporated into systems of surveillance without their knowledge. It has also led to far messier data sets: they may unintentionally include photos of minors, use racist and sexist labels, or have inconsistent quality and lighting. The trend could help explain the growing number of cases in which facial-recognition systems have failed with troubling consequences, such as the false arrests of two Black men in the Detroit area last year. People were extremely cautious about collecting, documenting, and verifying face data in the early days, says Raji. “Now we don’t care anymore. All of that has been abandoned,” she says. “You just can’t keep track of a million faces. After a certain point, you can’t even pretend that you have control.”..
Sorry, comments are closed for this post.