MIT Technology Review – By David Talbot on December 16, 2014
“By 2025, an estimated 1.8 billion people will suffer from water scarcity. Even in drought-stricken California, San Diego stands out. It gets less rain than parched Los Angeles or Fresno. The region has less groundwater than many other parts of the state. And more than 80 percent of water for homes and businesses is imported from sources that are increasingly stressed. The Colorado River is so overtaxed that it rarely reaches the sea; water originating in the Sacramento River delta, more than 400 miles north, was rationed by state officials this year, cutting off some farmers in California’s Central Valley from their main source of irrigation. San Diego County, hot, dry, and increasingly populous, offers a preview of where much of the world is headed. So too does a recent decision by the county government: it is building the largest seawater desalination plant in the Western Hemisphere, at a cost of $1 billion. The massive project, in Carlsbad, teems with nearly 500 workers in yellow hard hats. When it’s done next year, it will take in more than 100 million gallons of Pacific Ocean water daily and produce 54 million gallons of fresh, drinkable water. While this adds up to just 10 percent of the county’s water delivery needs, it will, crucially, be reliable and drought-proof—a hedge against potentially worse times ahead. The county is betting on a combination of modern engineering and decades-old desalination technology. A pipe trench under construction leads to a nearby lagoon inlet; 18 house-size concrete tanks await loads of sand and charcoal to treat the salt water before it is ready for desalination; pressurizers lead to a stainless-steel pipe one meter in diameter. This final piece of gleaming hardware will convey water under high pressure into 2,000 fiberglass tubes, where it will be squeezed through semipermeable polymer membranes. What gets through will be fresh water, leaving brine behind. The process is called reverse osmosis (RO), and it’s the mainstay of large-scale desalination facilities around the world. As water is forced through the membrane, the polymer allows the water molecules to pass while blocking the salts and other inorganic impurities. Global desalination output has tripled since 2000: 16,000 plants are up and running around the world, and the pace of construction is expected to increase while the technology continues to improve. Carlsbad, for example, has been outfitted with state-of-the art commercial membranes and advanced pressure-recovery systems. But the plants remain costly to build and operate. Seawater desalination, in fact, is one of the most expensive sources of fresh water. The water sells—depending on site conditions—for between $1,000 and $2,500 per acre-foot (the amount used by two five-person U.S. households per year). Carlsbad’s product will sell for around $2,000, which is 80 percent more than the county pays for treated water from outside the area. One reason is the huge amount of energy required to push water through the membranes. And Carlsbad, like most desalination plants, is being built with extra pumps, treatment capacity, and membrane tubes, the better to guarantee uptime. “Because it is a critical asset for the region, there is a tremendous amount of redundancy to give high reliability,” says Jonathan Loveland, vice president at Poseidon Water, the owner of the plant. “If any piece fails, something else will pick up the slack.”
Sorry, comments are closed for this post.