Via Cornell University Library Open Access e-prints: RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response. Úlfar Erlingsson, Vasyl Pihur, Aleksandra Korolova (Submitted on 25 Jul 2014 (v1), last revised 25 Aug 2014 (this version, v2)).
“Randomized Aggregatable Privacy-Preserving Ordinal Response, or RAPPOR, is a technology for crowdsourcing statistics from end-user client software, anonymously, with strong privacy guarantees. In short, RAPPORs allow the forest of client data to be studied, without permitting the possibility of looking at individual trees. By applying randomized response in a novel manner, RAPPOR provides the mechanisms for such collection as well as for efficient, high-utility analysis of the collected data. In particular, RAPPOR permits statistics to be collected on the population of client-side strings with strong privacy guarantees for each client, and without linkability of their reports. This paper describes and motivates RAPPOR, details its differential-privacy and utility guarantees, discusses its practical deployment and properties in the face of different attack models, and, finally, gives results of its application to both synthetic and real-world data.”
Sorry, comments are closed for this post.