gizmag: “Two undergraduate students from Toronto’s Ryerson University have created a prosthetic arm that is controlled by its wearer’s brain signals, and powered by compressed air. Not only is the Artificial Muscle-Operated (AMO) Arm said to offer a greater range of movement than traditional prostheses, but it also doesn’t require the amputee to undergo invasive surgery, is easy to learn to use, and it is relatively inexpensive to make. The AMO Arm was designed and built by Ryerson biomedical engineering students Thiago Caires and Michal Prywata. While it took them a year to create the custom software, the prototype itself was assembled in just 72 hours. Amputee users wear a headset, which detects signals that their brains still produce, even after an arm has been lost. Those electrical signals are sent wirelessly to a microprocessor in the arm, that compares them to an onboard database of established command signals. If there’s a match, it actuates the arm accordingly if the user thinks of “up,” for instance, the arm moves up.”
Sorry, comments are closed for this post.