NOAA: “Since the 1980s, the amount of perennial ice in the Arctic has declined. This animation tracks the relative amount of ice of different ages from 1987 through early November 2014. The oldest ice is white; the youngest (seasonal) ice is dark blue. Key patterns are the export of ice from the Arctic through Fram Strait and the melting of old ice as it passes through the warm waters of the Beaufort Sea. Each winter, sea ice expands to fill nearly the entire Arctic Ocean basin, reaching its maximum extent in March. Each summer, the ice pack shrinks, reaching its smallest extent in September. The ice that survives at least one summer melt season tends to be thicker and more likely to survive future summers. Since the 1980s, the amount of this perennial ice (sometimes called multiyear) has declined. This animation tracks the relative amount of ice of different ages from 1987 through early November 2014. The first age class on the scale (1, darkest blue) means “first-year ice,” which formed in the most recent winter. (In other words, it’s in its first year of growth.) The oldest ice (>9, white) is ice that is more than nine years old. Dark gray areas indicate open water or coastal regions where the spatial resolution of the data is coarser than the land map. As the animation shows, Arctic sea ice doesn’t hold still; it moves continually. East of Greenland, the Fram Strait is an exit ramp for ice out of the Arctic Ocean. Ice loss through the Fram Strait used to be offset by ice growth in the Beaufort Gyre, northeast of Alaska. There, perennial ice could persist for years, drifting around and around the basin’s large, looping current. Around the start of the 21st century, however, the Beaufort Gyre became less friendly to perennial ice. Warmer waters made it less likely that ice would survive its passage through the southernmost part of the gyre. Starting around 2008, the very oldest ice shrank to a narrow band along the Canadian Arctic Archipelago.”
Sorry, comments are closed for this post.