Benjamin Goller and Douglas L. Altshuler – PNAS December 8, 2014
“The avian brain has numerous specializations for navigation and processing visual information, but relatively little is known about how flying birds control their position in space. To study the role of vision in controlling hovering flight, we developed a virtual reality environment where visual patterns could be displayed to a freely flying hummingbird. Normal flight could only be performed if the visual background was completely stationary. In contrast, any motion in the background image caused the birds to lose stability. In natural settings, visual motion is constantly produced when objects and observers move relative to each other. This research demonstrates that flying birds are surprisingly sensitive to movements in their visual field and direct flight to respond to those movements.
Abstract – Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow—image movement across the retina—is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.”
Sorry, comments are closed for this post.